quarta-feira, 9 de janeiro de 2019


massa e energia relativista entrópica.
+ [x]
x
decadimensional
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         Dl







+
+
x
decadimensional
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         Dl




 
+
+
x
decadimensional
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         Dl



+
+
x
decadimensional
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         Dl



Na física do estado sólido, a estrutura eletrônica de bandas, ou simplesmente estrutura de bandas, se refere à estrutura formada ao se explicitar a relação entre os momentos e energias permitidos e os momentos e energias não permitidos aos elétrons em uma amostra material, usualmente elétrons em um cristal. Há faixas "contínuas" de momentos e energias permitidos separadas por faixas contínuas de momentos e energias não permitidos aos elétrons confinados à amostra.
A relação precisa entre momento e energia para os elétrons na matéria condensada é descrita por uma relação de dispersão específica; que em cristais, por ser dependente da orientação, assume a forma tridimensional. Nela identifica-se com facilidade uma "estrutura em bandas" ao se explicitarem as faixas de momentos e energias permitidas em relação àquelas não permitidas aos elétrons.
A existência de momentos e energias proibidos aos elétrons confinados a um cristal deriva-se de um processo de "sintonia" entre os comprimentos de onda dos elétrons (ver dualidade onda-corpúsculo) em movimento através da estrutura periódica e a periodicidade imposta pelas posições dos íons na rede cristalina.

    Introdução[editar | editar código-fonte]

    A característica mais importante da relação de dispersão para elétrons em cristais é que existem intervalos de energia não permitidos para o elétron. Isto é, se você pudesse observar a energia de todos os elétrons em um cristal e as marcasse em um linha, você observaria que certas faixas de valores não estariam presentes. Estas faixas de energia desaparecidas são chamadas de gaps de energia e tem origem na interferência entre as funções de onda eletrônicas, suas paridades e a periodicidade do cristal.
    A relação de dispersão de um elétron livre, isto, para um elétron livre da matéria e não confinado de qualquer outra forma, pode ser deduzida da sua energia cinética:
    Relação de dispersão característica a uma partícula livre; não confinada. A energia é proporcional ao quadrado do momento linear da partícula. A massada partícula define-se via relação de dispersão parabólica. ()
    Como o momento deste elétron é:
    Basta substitui-lo na energia cinética para obtermos a relação de dispersão de um elétron livre:
    ou, conforme diretamente enfatizado pela mecânica hamiltoniana:
    Dela vê-se que a energia do elétron cresce com o quadrado de seu momento, e todos os valores de energia são possíveis a um elétron livre.
    Essa relação de dispersão é em abrangência de fato característica à qualquer partícula material livre, e nela não figura qualquer gap de energia, uma vez que nenhum restrição ou interferência é imposta ao movimento do elétron ou partícula livres.
    Na estrutura da matéria contudo, mesmo nos condutores, os elétrons não são livres; encontrando-se confinados à amostra e sujeitando-se ainda a certas restrições de movimento impostas pelos íons da estrutura. Tais restrições se configuram de tal forma a proibirem que um elétron se mova com certas energias dentro da amostra, e em particular interferem drasticamente na relação entre energias e momentos quando em proximidades aos valores proibidos de energia, fazendo-a desviar consideravelmente da parábola anterior.
    Como consequência da intensa interação com a rede quando em proximidade de energias proibidas, há, a exemplo, casos em que forças aplicadas tentado aumentar a velocidade (e energia) do elétron em relação à rede cristalina levam-no de fato a reduzir sua velocidade relativa dado o aumento desproporcional da interação com a rede associado, comportando-se o elétron efetivamente como se esse tivesse uma "massa negativa". Conceitos como massa efetiva e momento cristalino são então definidos de forma a simplificar a descrição de tais partículas no interior do cristal.
    Uma relação de dispersão didática, exibindo as faixas proibidas de energia e o os desvios do comportamento parabólico esperado em proximidade às regiões de energia proibidas, é apresentada abaixo.
    Relação de dispersão para elétrons quase livres em potencial periódico unidimensional e Massa Efetiva para os mesmos

    Métodos de cálculo da estrutura eletrônica[editar | editar código-fonte]

    Existem várias maneiras de se estudar o aparecimento de bandas de energia em um sólido:

    Método de elétrons quase livres[editar | editar código-fonte]

    Considere um gás de elétrons presos em uma caixa do tamanho do sólido que você esta interessado. Esta é uma ótima aproximação de um metal. Devido ao princípio de exclusão de Pauli e a efeitos de blindagem, os níveis de energia antes disponíveis, podem agora apresentar gaps pequenos. Esta é a idéia básica para a se estudar a estrutura eletrônica de banda de elétrons quase livres.

    Método de Tight Binding[editar | editar código-fonte]

    Considere os átomos que formam o seu sólido e a estrutura eletrônica dos elétrons nestes átomos. Imagine que os átomos de seu sólido estão muito separados, uma distância grande o suficiente para que os elétrons em órbita de uma átomo não percebam a presença de outros elétrons em outros átomos. Se agora, em teoria, você começar a diminuir a distância entre estes átomos em algum momento os elétrons começarão a interagir. Os elétrons mais exteriores com certeza serão muito mais afetados pela presença dos outros átomos que os elétrons nas camadas mais internas. Usando as estrutura eletrônica atômica original e esta interação é possível calcular-se as alterações causadas no níveis atômicos e observar o aparecimento de bandas de elétrons e gaps de energia. Este é a ideias utilizada na teoria de tight binding (aproximação de primeiros vizinhos) para a estrutura eletrônica de bandas.
    Outros métodos importantes são o método k.p (lê-se k escalar p), e métodos com Funções de Green



    as dimensões categorias podem ser divididas em cinco formas diversificadas.

    tipos, níveis, potenciais, tempo de ação, especificidades de transições de energias, de fenômenos, de estados de energias, físicos [estruturais], de fenômenos, estados quântico, e outros.



    paradox of the system of ten dimensions and categories of Graceli.



    a four-dimensional system can not define all the energies, changes of structures, states and phenomena within a structure, that is why there are ten or more dimensions, I have developed and I work with ten, but nature certainly goes beyond ten, with this we move to a decadimensional and categorial universe.



    that is, categories ground the variables of phenomena and their interactions and transformations.



    and with this we do not have a relationship with mass, but with structure, therefore, a structure carries with it much more than mass, since also mass is related to forces, inertia, resistances and energies.



    but structures are related to transitions of physical states, quantum, energies, phenomena, and others.



    as well as transitions of energies, phenomena, categories and dimensions.

    paradoxo do sistema de dez dimensões e categorias de Graceli.

    um sistema de quatro dimensões não tem como definir todas as energias, mudanças de estruturas, estados e fenômenos dentro de uma estrutura, por isto se tem dez ou mais dimensões, desenvolvi e trabalho com dez, mas a natureza com certeza vai alem das dez, com isto caminhamos para um universo decadimensional e categorial.

    ou seja, as categorias fundamentam as variáveis dos fenõmenos e suas interações e transformações.

    e com isto não se tem uma relação com massa, mas com estrutura, pois, uma estrutura carrega consigo muito mais do que massa, uma vez também que massa está relacionado com forças, inércia, resistências e energias.

    mas estruturas está relacionado com transições de estados físicos, quântico, de energias, de fenômenos, e outros.

    como também transições de energias, fenômenos, categorias e dimensões.







     = entropia reversível

    postulado categorial e decadimensional Graceli.

    TUDO QUE ESTÁ RELACIONADO COM ENERGIA, ESTRUTURAS, FENÔMENOS E DIMENSÕES ESTÁ INSERIDO NO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.


    todo sistema decadimensional e categorial é um sistema transcendente e indeterminado.
    matriz categorial Graceli.

    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D


    1] Cosmic space.
    2] Cosmic and quantum time.
    3] Structures.
    4] Energy.
    5] Phenomena.
    6] Potential.
    7] Phase transitions of physical [amorphous and crystalline] states and states of energies and phenomena of Graceli.
    8] Types and levels of magnetism [in paramagnetic, diamagnetic, ferromagnetic] and electricity, radioactivity [fissions and fusions], and light [laser, maser, incandescence, fluorescence, phosphorescence, and others.
    9] thermal specificity, other energies, and structure phenomena, and phase transitions.
    10] action time specificity in physical and quantum processes.




    Sistema decadimensional Graceli.

    1]Espaço cósmico.
    2]Tempo cósmico  e quântico.
    3]Estruturas.
    4]Energias.
    5]Fenômenos.
    6]Potenciais., e potenciais de campos, de energias, de transições de estruturas e estados físicos, quãntico,  e estados de fenômenos e estados de transições, transformações e decaimentos.
    7]Transições de fases de estados físicos [amorfos e cristalinos] e estados de energias e fenômenos de Graceli.
    8]Tipos e níveis de magnetismo [em paramagnéticos, diamagnético, ferromagnéticos] e eletricidade, radioatividade [fissões e fusões], e luz [laser, maser, incandescências, fluorescências, fosforescências, e outros.
    9] especificidade térmica, de outras energias, e fenômenos das estruturas, e transições de fases.
    10] especificidade de tempo de ações em processos físicos e quântico.


    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D


    Matriz categorial de Graceli.


    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             Dl


    Tipos, níveis, potenciais, tempo de ação, temperatura, eletricidade, magnetismo, radioatividade, luminescências, dinâmicas, estruturas, fenômenos, transições de fenômenos e estados físicos, e estados de energias, dimensões fenomênicas de Graceli.

    [estruturas: isótopos, partículas, amorfos e cristalinos, paramagnéticos, dia, ferromagnéticos, e estados [físicos, quântico, de energias, de fenômenos, de transições, de interações, transformações e decaimentos, emissões e absorções, eletrostático, condutividade e fluidez]].
    trans-intermecânica de supercondutividade no sistema categorial de Graceli.

    EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]

    p it = potentials of interactions and transformations.
    Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.

    h e = quantum index and speed of light.

    [pTEMRlD] = THERMAL, ELECTRICAL, MAGNETIC, RADIOACTIVE, Luminescence, DYNAMIC POTENTIAL] ..


    EPG = GRACELI POTENTIAL STATUS.

    [pTFE] = POTENCIAL DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS E DE ENERGIAS E FANÔMENOS [TRANSIÇÕES DE GRACELI]

    , [pTEMRLD] [hc] [pI] [PF] [pIT][pTFE] [CG].